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In this paper, we describe the connection of orthonormal wavelets to inter-
polatory subdivision. This connection leads us to a construction of an orthonormal
wavelet of compact support whose Fourier transform has prescribed imaginary
zeros. When all the zeros are at the origin, our construction reduces to the wavelet
constructed by I. Daubechies. � 1996 Academic Press, Inc.

1. Introduction

Recall that a Stationary Subdivision Scheme is an iterative method for the
construction of curves (and surfaces). For planar curves, such a scheme
begins with control points [*j : j # Z] (vectors in R2) associated with the
coarse lattice Z. A rule for extending the control points to the fine lattice
Z�2=[ j�2: j # Z] is specified by a mask [aj : j # Z] of real numbers, always
assumed to be of finite support so that the set

[ j: aj {0, j # Z] (1.1)

consists of a finite number of integers. The control points [*1
j : j # Z] at the

next level are defined to be

*1
j :=(S*) j , j # Z (1.2)

where

(S*) j := :
k # Z

aj&2k*k , j # Z. (1.3)
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(Keep in mind that the control points *� 1
j�2 :=*1

j , j # Z represent the new
control points on the fine lattice Z�2.) We view S as a linear operator on
bounded sequences *=(*j) j # Z

&*&�=sup [ |*j |: j # Z]<� (1.4)

and say that the stationary subdivision scheme S converges (in l�(Z))
provided that for every bounded sequence * there is an f # C(R) such that

lim
n � �

sup [ |(S n*) j&f ( j�2n)|: j # Z]=0 (1.5)

( f should be nonzero for some *).
An essential feature of this iterative scheme for generating the curve f is

that it is stationary and homogeneous. Its spatial invariance comes from
noting that for any e # [0, 1]

*� 1
j+e�2= :

k # Z

a2j+e&2k*k= :
k # Z

ae+2k *j&k , j # Z. (1.6)

Specifically, these equations reveal that there are two rules which extend
the initial control points [*j : j # Z] to the fine lattice and each rule is inde-
pendent of the ``spatial'' location j # Z. In other words, S consists of two
Toeplitz matrices. At each further step of the iteration the same rules are
used which insures the homogeneity of the iterative process.

Practical considerations sometimes demand that both nonstationary, non-
homogeneous and even nonlinear (in the initial control points) subdivision
schemes be considered. Also, more complex coarse�fine lattice pairs Z, Z�2
are needed, especially for surface generation by subdivision. Elaborating on
any of these important and interesting variations of the environment described
above would get us far afield from our main purpose here. Information on
these issues and many of the basic facts about stationary subdivision
schemes can be found in [2], see also the papers [5�12, 16�19].

There is a special subclass of stationary subdivision schemes which are inter-
polatory. They have the property that the limit curve f in (1.5) interpolates
the original control points, that is,

f ( j)=*j , j # Z. (1.7)

For instance, if at each stage of the iteration the previous control points are
left unchanged then certainly (1.7) follows. According to (1.6) this demand
on the subdivision scheme (1.3) is equivalent to the requirement on the
mask that

a2j=$j , j # Z. (1.8)
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Equivalently, if we let a(z)=�j # Z ajz j then we have

a(z)+a(&z)=2, z # C"[0]. (1.9)

As far as we are aware, the earliest reference to interpolatory subdivision
is the paper of Dubuc [8]. However, it is the recent beautiful paper of
Deslauriers and Dubuc [6] which analyzes a class of interpolatory subdivi-
sion schemes that provides the motivation for this paper. We wish to
elaborate upon the connection between this interesting work and the con-
struction of compactly supported orthonormal wavelets by Daubechies in
[3, 4] see also [1, 20]. In fact, many of the remarks we make here could
have been written several years ago. Nonetheless, we feel it is beneficial to
point out, especially within the geometric modelling community, this plea-
sant connection between orthonormal wavelets of Daubechies on one hand
and the interpolatory subdivision scheme of Deslauriers and Dubuc on the
other. Along the way, we will present some improvements and extensions
of the ideas in [6] which may be useful for the further study of wavelets.
These improvements will lead us to an extension of the orthonormal
wavelet construction given in [3].

2. Some Background Material

Before we get to look at the interpolatory scheme from [6] we briefly
review some basic general facts about interpolatory subdivision which
follow from results in [2]. To this end, we set

a(z)= :
j # Z

ajz j, z # C"[0].

Our first comment highlights the close connection between the convergence
of interpolatory subdivision and the existence of a solution to a certain
functional equation called the refinement equation.

Theorem 2.1. Suppose the subdivision scheme (1.3) satisfies (1.8) and
converges. Then

a(&1)=0, a(1)=2 (2.1)

and the limit f is given by

f (z)= :
j # Z

*j.(x&j), x # R (2.2)
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where . is a continuous function of compact support which satisfies the
refinement equation

.(x)= :
j # Z

aj.(2x&j), x # R, (2.3)

and has the properties that

:
j # Z

.(x&j)=1, x # R (2.4)

and

.( j)=$j , j # Z. (2.5)

Conversely, if . is a continuous solution of the refinement equation (2.3)
satisfying (2.5) then (2.1) holds and the subdivision scheme (1.3) converges to
the function (2.2).

This result describes the relationship between a continuous solution of
the refinement equation (2.3) satisfying (2.5) and the convergence of (1.3).

Note that (2.1) means that a(z)=(1+z) b(z) where

b(z)= :
j # Z

bjz j, z # C"[0] (2.6)

satisfies b(1)=1. The order of zero of a(z) at z= &1 regulates the (global)
number of continuous derivatives that the limit of an interpolatory subdivision
scheme possesses. This fact is described next.

Theorem 2.2. Suppose [aj]j # Z is a finite mask which satisfies (1.8) and
has a corresponding subdivision scheme which converges. Then the associated
refinable function . in (2.3) is in Cr(R), r�1, if and only if

a(z)=
(1+z)r+1

2r b(z)

for some b(z) of the form (2.6) such that b(1)=1 and the subdivision scheme
corresponding to the mask [cj]j # Z defined by

:
j # Z

cjz j :=(1+z) b(z)

converges.

Another useful fact about the refinement equation (2.3) is the following
special case of a result from [2], see also [14].
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Theorem 2.3. Let . be a continuous solution of compact support to the
refinement equation

.(x)= :
j # Z

aj.(2x&j), x # R.

Then

:
j # Z

.(x&j)=|
�

&�
.(t) dt, x # R.

3. Orthonormal Wavelets of Daubechies and Symmetric Iterative

Interpolation of Deslauriers and Dubuc

With these important general facts in mind, we now turn our attention
to Deslauriers-Dubuc Interpolation. The interpolatory scheme from [6]
begins with an integer N�1 and then chooses the new control points
[*� 1

j+e�2 : j # Z], e # [0, 1] as follows: Fix an integer j # Z. Let p be the
unique polynomial of degree 2N&1 such that

p( j+l)=*j+l , l=&N+1, ..., N. (3.1)

(Caveat: p depends on j.) Evaluate p at j+e�2 and set

*1
2j+e=*� 1

j+e�2 :=p( j+e�2). (3.2)

In particular, from (3.1) (for l=0) and (3.2) (with e=0) we see that

*� 1
j =*2j , j # Z (3.3)

and so this is an interpolatory subdivision scheme. To identify its
associated mask we let lj (x), j=&N+1, ..., N be the Lagrange polyno-
mials of degree 2N&1 which have the property that

li ( j)=$ij , i, j=&N+1, ..., N (3.4)

that is,

lj (x)=(&1)N&1 >N
l=&N+1 (x&l)

(N&1+j)! (N&j)! (x&j)
. (3.5)
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Then the polynomial p in (3.1) is given by

p(x)= :
N

k= &N+1

lk(x&j) *j+1 (3.6)

and hence

*� 1
j+e�2= :

N

k= &N+1

lk(e�2) *j+k . (3.7)

Comparing this equation with (1.6) we see that

ae&2k=lk(e�2), k=&N+1, ..., N (3.8)

(and zero otherwise).
Among other things it was proved in [6] that this subdivision scheme

converges. The convergence proof was based on the observation that

a(ei%)�0, 0�%�2? (3.9)

where equality holds only at %=?. This was proved in [6] by a Rolle's
theorem argument. The proof below computes a(ei%) directly and in par-
ticular confirms (3.9) by inspection

Lemma 3.1.

a(ei%)=2
�%

? (sin t)2N&1 dt
�2?

? (sin t)2N&1 dt

=2 {1&
�%

0 (sin t)2N&1 dt
�?

0 (sin t)2N&1 dt=
=2 {1&

(2N&1)!
((N&1)!)2 22N&1 |

%

0
sin 2N&1 t dt= .

Proof. Note that the only possible nonzero values of aj , j # Z are
a&2N+1 , ..., a2N&1 and a2l=$l , l=&N+1, ..., N&1. Therefore we have
in particular that

a(z)= :
| j |�2N&1

ajz j, z # C"[0]. (3.10)

Observe from definition (3.2) it follows that whenever p # ?2N&1 and
*j :=p( j), j # Z then *1

j =p( j�2), j # Z. We will make use of this property in
the proof. To this end, we recall that generally the subdivision scheme S in
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(1.3) has the property that whenever *j :=p( j), j # Z, where p is a polyno-
mial of exact degree m&1 the sequence (S*) j is likewise the value of a
polynomial q at j, (that is, q( j)=(S*) j , j # Z, if and only if a( j)(&1)=0,
j=0, 1, ..., m&1). In other words, a(z)=(1+z)m r(z) for some Laurent
polynomial r(z), see [2]. Moreover, in this case, q is given by

q(x)=
1
2

:
k # Z

akp \x&k
2 + , x # R. (3.11)

If, in fact q(x)=p( x
2) as in the present situation then by (3.11)

p \x
2+=

1
2

:
k # Z

akp \x&k
2 + , x # R. (3.12)

Comparing the leading terms of both sides of (3.12) implies that

xm&1=
1
2

:
k # Z

ak(x&k)m&1, x # R,

so that we have a( j)(1)=0, j=1, ..., m. Applying this observation to the
interpolatory subdivision scheme of Deslauriers and Dubuc we conclude
that a(&1)=0 and also

a( j)(\1)=0, j=1, ..., 2N&1.

Therefore, according to (3.10) there is a constant c such that

a$(z)=c(1+z)2N&1 (1&z)2N&1 z&2N.

We let z=ei% and obtain

ia$(ei%) ei%=c(sin %)2N&1 (&1)N&1 22N&1

from which it follows that

a(ei%)=2
�%

? (sin t)2N&1 dt
�2?

? (sin t)2N&1 dt
.

To evaluate the integrals

\N :=|
?

0
sin 2N&1 t dt
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note that for N>1

\N=|
?

0
sin 2N&1 t dt=|

?

0
(sin 2N&3 t)(1&cos 2 t) dt

=\N&1&|
?

0
(sin 2N&3 t cos 2 t) dt

=PN&1&|
?

0

d
dt \

1
2N&2

sin 2N&2 t+ cos t dt

=\N&1&
1

2N&2
\N ,

from which it follows that

\N=
2N&2
2N&1

\N&1=2 \ N&1
2N&1+ \N&1

= } } } =
2N&1(N&1)! \1

(2N&1)(2N&3) } } } 3

=
22N&1((N&1)!)2

(2N&1)!
. K

Let us now review the Daubechies compactly supported orthonormal
smooth wavelet construction [3, 4]. The basic problem is to find a smooth
function . of compact support which satisfies a refinement equation of the
form

.(x)= :
j # Z

bj.(2x&j), x # R (3.13)

which has orthonormal integer translates. That is,

|
�

&�
.(x) .(x&j) dx=$j , j # Z. (3.14)

Once such a function . has been identified then it follows that

�(x) := :
j # Z

(&1) j b1&j.(2x&j), x # R (3.15)

has the property that the functions

�k, j (x)=- 2k �(2kx&j), j, j # Z

48 CHARLES A. MICCHELLI



File: 640J 296109 . By:CV . Date:24:07:96 . Time:09:54 LOP8M. V8.0. Page 01:01
Codes: 2244 Signs: 1241 . Length: 45 pic 0 pts, 190 mm

form an orthonormal basis of L2(R), [3, 4]. In other words, � is an ortho-
normal wavelet and it clearly has as many continuous derivatives as .
itself.

The relationship of the equations (3.12) and (3.13) to interpolatory
subdivision is quite clear. We introduce the autocorrelation function of .

F(x) :=|
�

&�
.( y) .( y&x) dy

and observe that

F(x) := :
j # Z

aj F(2x&j)

where

:
j # Z

ajeij% :=
1
2 } :

j # Z

bj eij%}
2

(3.16)

and

F( j)=$j , j # Z.

These formulas already suggest the relationship between the work of
Deslauriers and Dubuc [6] and Daubechies [3]. To pin this down exactly,
let us recall the details of the construction in [3] of a . which satisfies both
(3.13) and (3.14). First, we suppose M is chosen so that bj=0 for j<0 or
j>M, and consider the refinement equation in the form

.(x)= :
M

j=0

bj.(2x&j).

As a consequence of Theorem 2.3 any such function has the property that
��

&� .(x) dx= \1. Now, pick an N and try to find a0 , ..., aM so that not
only do (3.13) and (3.14) hold but also � has N-vanishing moments. In
other words,

|
�

&�
�(x) dx= } } } =|

�

&�
�(x) xN&1 dx=0.

A necessary and sufficient condition which insures that this is the case is that
b(&1)= } } } =b(N&1)(&1)=0. In fact, these conditions on b are equivalent
to saying that

:
j # Z

(&1) j b1&jq( j)=0, q # ?N&1

49INTERPOLATORY SUBDIVISION



File: 640J 296110 . By:CV . Date:24:07:96 . Time:09:54 LOP8M. V8.0. Page 01:01
Codes: 2099 Signs: 1030 . Length: 45 pic 0 pts, 190 mm

while for every p # ?N&1

|
�

&�
�(x) p(x) dx= :

j # Z

(&1) j b1&j r( j)

where r is the polynomial in ?N&1 defined by

r( y) :=|
�

&�
.(2x&y) p(x) dx.

The mapping so defined from p to r is lower triangular and nonsingular
since ��

&� .(x) dx{0. Therefore, indeed the moment conditions on �
require that b(z) has the form

b(z)=2 \1+z
2 +

N

S(z)

where S is a polynomial of degree at most M&N with S(1)=1.
It is a simple fact that the orthogonality condition (3.14) implies that

b(z) satisfies the equation

|b(z)|2+|b(&z)| 2=4, |z|=1. (3.17)

Actually, using equation (3.16) in (1.9) proves (3.17). It was shown in
[3, 4] that the set of all solutions to this algebraic equation has the form

|S(ei%)| 2=PN(sin 2 %�2)+(sin 2N %�2) R \1
2

cos %+ (3.18)

where R is any odd degree polynomial and

PN(x)= :
N&1

j=1
\N&j&1

j + x j. (3.19)

Hence the solution of least degree is

|S(ei%)| 2=PN(sin 2 %�2). (3.20)

In this case, M=2N&1 and . has support (0, 2N&1). It was pointed out
in [4, p. 978] that Meyer observed the formula

\cos2 1
2

%+
N

PN \sin2 1
2

%+=1&
(2N&1)!

[(N&1)!]2 22N&1 |
%

0
sin2N&1 t dt. (3.21)
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Hence

|b(ei%)| 2=4(cos2N %�2) |S(ei%)| 2

=4(cos2N %�2) PN \sin2 1
2

%+
=4 {1&

(2N&1)!
[(N&1)!]2 22N&1 |

!

0
sin 2N&1 x dx=

=2a(ei%)

i.e.

a(ei%)=
1
2

|b(ei%)| 2.

This means that the Daubechies refinable function . has support (0, 2N&1)
and its autocorrelation is the Lagrange function F of Deslauriers�Dubuc
Interpolation. We shall extend this result in Section 4 and for this purpose
we address the issue of convergence of interpolatory subdivision in the next
section.

4. Convergence of Multivariate Interpolating Subdivision

In this section, we change the emphasis and present a simple sufficient
condition for the convergence of multivariate interpolatory stationary sub-
division schemes. Later we will apply this to a generalization of the inter-
polatory subdivision of Deslauriers and Dubuc and thereby be led to an
extension of the Daubechies wavelet. Before we state our result, we review
some standard multivariate notation. First, we use | } |� , | } | 1 for the l�

and l1 norm on Rs, respectively. Also, T=[z=(z1 , ..., zs): zi # C,
|zi |=1, i=1, ..., s] is the s-torus and E stands for the extreme points of the
s-cube, [0, 1]s. We denote by T� the subset of the s-torus consisting of all
vectors of the form (eix1, ..., eixs) where |xi |�?�2, i=1, 2, ..., s. We also use
\ :=(1, ..., 1)T for this special vector in E.

Motivated by our previous discussion we consider stationary subdivision
on Rs of the form

(S*) i= :
j # Zs

ai&2j*j , i # Zs (4.1)

where *[ j: aj {0, j # Zs]<� and say it is interpolatory provided that

a2i=$i , i # Zs. (4.2)
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In this case, the symbol of [aj]j # Zs

a(z)= :
j # Zs

aj z j,

is defined for z=(z1 , ..., zs) with z # (C"[0])s. Here we use the standard
notation z j=z j1

1 } } } z js
s , j=( j1 , ..., js), z=(z1 , ..., zs). Moreover, (4.2) is

equivalent to the fact that a(e)=2s and

:
i # E

a((&1) i z)=2s, z # (C"[0])s. (4.3)

Theorem 4.1. Suppose [ai]i # Zs is a finitely supported sequence with the
properties that

1. a2i=$i , i # Zs (4.4)

2. a(z)�0, z # T (4.5)

3. There exist vectors x1, ..., xn # Zs with |xi| 1=1, i=1, ..., n and a
finitely supported sequence [bi]i # Zs with b(z){0, z # T� , b(\)=1 such that

a(z)=2s&n `
n

i=1

(1+zxi
) b(z). (4.6)

Then there is a continuous refinable function . of compact support satisfying the
refinement equation (2.3) such that .̂ # L1(R) & C(R), .̂(w)�0, w # Rs and

.( j)=$j , j # Zs. (4.7)

Moreover, the stationary subdivision scheme (4.1) converges to f (x) =
�i # Zs *i.(x&i).

We remark that the condition on the vectors x1, ..., xn implies that they
are all coordinate directions. Therefore, in Theorem 4.1 we are assuming
that

a(z)=2s&n `
s

i=1

(1+zi)
ki b(z), z=(z1 , ..., zs)

where k1 , ..., ks are nonnegative integers such that k1+ } } } +ks=n. More-
over, substituting z=\ into (4.3) and using (2) of Theorem 4.1 we
conclude that each ki , i=1, ..., s must be positive.

Proof. We define for k=1, 2, ... the Laurent polynomials

ak(z) :=a(z) } } } a(z2k&1\)

:= :
j # Zs

ak
j z j, z # C"[0].
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Since ak(z), a(z) take a vector argument we interpret z2 k&1\ as the vector
(z2k&1

1 , ..., z2k&1

s ) where z=(z1 , ..., zs). Then it follows from (4.4) (by induction
on k) that

ak
2kj=$j , j # Zs, k=1, 2, ..., (4.8)

and, in particular,

1
(2?)s |

[&?, ?]s
ak(e&ix) dx=1, k=1, 2, ... . (4.9)

Again, as above, we interpret e&ix as the vector (e&ix1, ..., e&ixs) where
x=(x1 , ..., xs). Also, since a(\)=2s there is a constant M>0 such that

|1&2&sa(e&ix)|�M |x|� , x # Rs

and it follows that there is a function �(x) continuous on Rs such that

�(x)= lim
k � �

2&ksak(e&ix�2k
). (4.10)

Obviously, this convergence is uniform on compact sets and �(x)�0,
x # Rs. In fact, we will show that � # L1(Rs) and is strictly positive on
[&?, ?]s. For this purpose, we observe that for x # Rs

�(x)= `
�

l=1

1
2s a(e&ix�2l

)=
1
2s a(e&i(x�2)) `

�

l=1

1
2s a(e&ix�2l+1

)

or

�(x)=
1
2s a(e&ix�2) �(x�2) (4.11)

and for any k�1

�(x)=2&ksak(e&ix�2k
) �(x�2k). (4.12)

Hence from (4.12), (4.5) and (4.9) we get

1
(2?)s |

[&2k?, 2k?]s
�(x) dx

=
1

(2?)s |
[&2k?, 2 k?]s

2&ksak(e&ix�2k
) �(x�2k) dx

=
1

(2?)s |
[&?, ?]s

ak(e&ix) �(x) dx

�max[�(x): |x|��?]

which implies that � # L1(Rs).
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Next, we provide a lower bound for �. To this end, we choose a positive
# such that |b(z)|>#, for z # T� . First, observe that

`
�

l

=1
1
2s a(e&ix�2l

)= `
n

r=1

`
�

l=1
\1+e&i(x r } x)�2l

2 + `
�

l=1

b(e&ix�2l
)

= `
n

r=1
\1&e&ix r } x

ixr } x + `
�

l=1

b(e&ix�2l
).

Now, choose a constant c>0 such that

|1&b(eix)|�c |x|� , x # Rs

and so it follows that whenever l�l0 , |x|��? where ec?�2l0 ,

|1&b(e&ix�2l
)|�c 2&l |x|��?c 2&l�e&1.

Therefore, since 1&t�e&et, for 0�t�e&1 we conclude that for |x|��?

} `
�

l=1

b(eix�2l
) }�#l0&1 `

�

l=l0

(1&|1&b(eix�2l
)| )

�#l0&1 `
�

l=l0

e&e |1&b(eix �2l
)|

�#l0&1 exp \&e :
�

l=l0

|1&b(eix�2l
)|+

�#l0&1e&21&l0?ce�#l0&1e&2 :=+.

Consequently, we have for |x|��? that

�(x)� `
n

r=1
} sin (xr } x)�2

(xr } x)�2 } +

� + \2
?+

n

:=:.

Thus, when |x|��2n? it follows from (4.12) that

} 1
2s a(eix�2) } } }

1
2s a(e&ix�2n

) }
�\&1 }�(x�2n)

1
2s a(e&ix�2) } } }

1
2s a(e&ix�2n

) }
=:&1�(x). (4.13)
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Moreover, from (4.8) we have that for j # Zs

$j=ak
2kj=

1
(2?)s |

[&?, ?]s
a(e&ix) } } } a(e&i2k&1x) ei2kj } x dx

=
1

(2?)s |
Rs

`
k&1

l=1

1
2s a(e&ix�2l

) /[&?2k, ?2k]s (x) eij } x dx.

According to the bound (4.13) the integrand above is bounded by \&1�(x)
and by the definition of � converges pointwise to �(x). Thus by the
Lebesgue dominated convergence theorem we conclude that

$j=
1

(2?)s |
Rs

�(x) eij } x dx, j # Zs. (4.14)

Now, we define the continuous function

.( y) :=
1

(2?)s |
Rs

�(x) eiy } x dx (4.15)

so that

.( j)=$j , j # Zs (4.16)

and observe that since

�(x)=
1
2s a(e&ix�2) �(x�2), x # Rs (4.17)

we have

.(x)= :
j # Zs

aj.(2x&j), x # Rs. (4.18)

It is easy to see that the function . is of compact support. To this end,
choose an integer \>0 such that if | j |�>\, j # Zs then aj=0. Now, we
claim that .( j�2k)=0 whenever j # Zs and | j | �>2k\. We prove this by
induction (the case k=0 being taken care of by (4.16)). According to (4.18)

.( j�2k)= :
|l|��\

al.(( j&l 2k&1)�2k&1). (4.19)

Since, for |l|��\ and | j�2k|�>\ it follows that

| j�2k&1&l| ��| j�2k&1|�&|l|�

>2\&\=\
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we conclude by the induction hypothesis that indeed .( j�2k)=0 for any
j # Zs with | j�2k|>\. Using continuity of . it follows that .(x)=0,
whenever |x|�>\ and x # Rs.

We now can appeal to Theorem 2.3 and conclude that

:
j # Zs

.(x&j)=.̂(0), x # Rs.

Thus by (4.16) we get that .̂(0)=1 so that (4.17) and (4.18) imply directly
that .̂=�.

Finally, we observe that the subdivision (4.1) converges. This follows
from general principles [2] but in this case is quite easy to see. In fact, let
* # l�(Zs) then f (x)=�j # Zs *j.(x&j) is uniformly continuous on Rs.
Moreover, from the refinement equation (4.18) we see that

f (x)& :
j # Zs

f ( j�2k) .(2kx&j)

= :
j # Zs

((Sk*) j&f ( j�2k)) .(2kx&j). (4.20)

Since . is continuous of finite support and

:
j # Z

.(x&j)=1, x # Rs

the left hand side of (4.20) goes to zero as k � � uniformly for x # Rs.
Hence, in view of the interpolation conditions (4.16) we conclude that

lim
k � �

sup [ |(Sk*) j&f ( j�2k)|: j # Zs]=0. K

Corollary 4.1. Suppose [ai]i # Z is a finitely supported sequence such
that

a(z)+a(&z)=2, z # C"[0]

a(1)=2 and a(z)�0, when |z|=1 with equality only if Re z<0. Then the
subdivision scheme (1.3) converges to a continuous refinable function . of
compact support such that .( j)=$j , j # Z and .̂(x)�0, x # R.

We remark that this corollary, applied to the Deslauriers�Dubuc Inter-
polation, establishes that their iteration converges. In the general case, the
last property of . indicated in Corollary 4.1 suggests, as with the rela-
tionship between the autocorrelation of the Daubechies wavelet and the
Lagrange fundamental function of Deslauriers Dubuc Interpolation that .
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is the autocorrelation of some function. In fact, we observe below that the
. of Corollary 4.1 can be expressed as the autocorrelation of a refinable
function in L2(R) of compact support. Specifically, we have

Corollary 4.2. Let [ai]i # Z be a finitely supported sequence satisfying
the hypothesis of Corollary 4.1 and . the corresponding refinable function.
Let b be any polynomial of degree N with real coefficients [bj]N

j=0 satisfying

a(z)= 1
2 |b(z)| 2, |z|=1. (4.21)

Then there is a refinable function % # L2(R) with support in (0, N) such that

%(x)= :
N

j=0

bj %(2x&j), a.e. x # R (4.22)

and

.(x)=|
R

%(t) %(t&x) dt, x # R. (4.23)

Proof. Since a(z)�0 for |z|=1, Riesz's Lemma (cf. [4]) insures that
there exists a polynomial b of degree N with real coefficients which satisfies
(4.21) where N is the degree of a(z), viz.

a(z)= :
| j |�N

aj z j, z # C"[0].

For any such choice of b with b(1)=2 we let

H(x) := `
�

l=1

1
2

b(e&ix�2l
), x # R. (4.24)

Then H is a continuous function which satisfies the functional relation

H(x)= 1
2 b(e&ix�2) H(x�2), x # R. (4.25)

Moreover, since

|H(x)|2=.̂(x) (4.26)

we conclude that H # L2(R). Hence H=%� for some % # L2(R) and
consequently by (4.25) it follows that

%(x)= :
N

j=0

bj %(2x&j) a.e. x # R,
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and by (4.26)

.(x)=|
R

%(t) %(t&x) dx, x # R,

(both sides of this equation are continuous functions of x).
It remains to see that % is of finite support. According to Lemma 6.2.2,

p. 76 of [4] (attributed to Deslauriers and Dubuc) with N1=0 and N2=N
we conclude that H is an entire function of exponential type N and there-
fore is the Fourier transform of a distribution with support on [0, N].
Since we have already pointed out that it is the Fourier transform of
% # L2(R) we conclude that % has its support in [0, N]. K

5. Iterative Interpolation by Exponentials

In this section, we give an extension of the Deslauriers�Dubuc Interpola-
tion and also of the Daubechies construction of orthonormal wavelets. We
accomplish these extensions by studying the iteration described in the
beginning of Section 3 using interpolation by linear combinations of certain
exponentials rather than polynomials. To prepare for our analysis, we recall
two facts from [13].

Lemma 5.1. (Lemma 2.3, [13]). Let the Laurent polynomial

c(z)= :
n

&n

cjz j

have only zeros in (&�, 0) where cj are real constants with cj=c&j , | j |�n.
Then there is a polynomial p of degree n such that

p(x)=c(ei|), x=sin 2 |�2

and p has only zeros in [1, �). Moreover, if c(ei|){0, |||�? then p(1){0.

To apply this result we choose any n nonnegative numbers x1 , ..., xn such
that

0�x1� } } } �xn�1. (5.1)

We allow repetition in the numbers and with these nonnegative numbers
consider the (symmetric) Laurent polynomial

d(z)= `
n

j=1

(z+xi)(z&1+xi)
(1+xi)

2 (5.2)
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In the spirit of Lemma 5.1 we see that the polynomial

P(x)= `
n

j=1
\1&

4xi

(1+xi)
2 x+ , (5.3)

has the property that

P(sin2 |�2)=d(ei|), | # R. (5.4)

To make use of this fact, we recall the following.

Lemma 5.2 (Lemma 2.4, [13]). Let p be a polynomial of degree n with
all its zeros in [1, �) having a leading coefficient of sign (&1)n. Then there
exists a unique polynomial q with real coefficients of degree n&1 such that

q(x) p(x)+q(1&x) p(1&x)=1,

and this polynomial has the property that

q(x)>0 for x # (0, 1).

Let us apply this fact to the polynomial P in (5.3) and obtain from P,
via Lemma 5.2, a polynomial Q of degree n&1 such that

P(x) Q(x)+Q(1&x) P(1&x)=1 (5.6)

and

Q(x)>0, x # (0, 1). (5.7)

We shall show that, in fact, Q(0){0. For this purpose, we note that

P(0)=1, P(1)=\`
n

j=1

1&xi

1+xi+
2

. (5.8)

To continue, we need to delve into the proof of Lemma 5.2 given in [13].
We make a distinction of cases. The easiest circumstance occurs when
1 # [x1 , ..., xn]. In this case, equation (5.8) implies P(0)=1 and P(1)=0
and consequently choosing x=0 in (5.6) we conclude Q(0)=1. Next, sup-
pose 1 � [x1 , ..., xn], then P(1)>0 by (5.8) and, in particular, P only has
zeros in (1, �). Let a, b represent the smallest, largest zero of P in this
interval. In [13], it was shown in the proof of Lemma 5.2, as applied to the
polynomials P and Q that the function PQ is positive and decreasing on
the interval (1&b, a). hence we conclude by this fact and equation (5.6)
that

1=q(1&b) P(1&b)>P(0) Q(0)>P(1) Q(1)>P(a) Q(a)=0.
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That is, since P(0)=1 we get

1>Q(0)>P(1) Q(1)>0

and in particular, Q(0) Q(1){0. Thus, in all cases, we have verified that
Q(0){0 as claimed above.

We now define the Laurent polynomial

a(z) :=2d(z) b(z), z # C"[0] (5.9)

where b is the symmetric Laurent polynomial of degree n&1 defined by

b(ei|) :=Q(sin2 |�2), | # R. (5.10)

We summarize in the next proposition several useful properties of the
polynomial a(z).

Proposition 5.1. For any 0<x1� } } } �xn�1 there exists a unique
Laurent polynomial

a(z)= :
| j |�2n&1

ajz j, (5.11)

with aj=a&j=a� j , | j |�2n&1 such that

a(z)+a(&z)=2, z # C"[0] (5.12)

and

a(&xi)=a(&x&1
i )=0, i=1, ..., n (5.13)

(where derivatives of a(z) are taken for multiple xi 's). Moreover, this polyno-
mial has the property that

a(z)�0, |z|=1 (5.14)

and equality occurs only if z=&1. When 1 # [x1 , ..., xn] then equality holds
if and only if z=&1.

Proof. The uniqueness of a(z) satisfying the conditions of the proposi-
tion is clear. In fact, if a1 and a2 satisfy (5.11)�(5.13), then the difference
g=a1&a2 has 4n zeros at &xi , &x&1

i , xi , x&1
i , i=1, ..., n (counting multi-

plicities) and hence must be identically zero.
Our previous discussion provides the existence of a(z) the Laurent poly-

nomial. In fact, a(z) given by (5.9) clearly vanishes at &xi , &x&1
i ,

i=1, ..., n since d(z) given by (5.2) has these values as zero. Moreover, a(z)
has the form (5.11) because both d(z) and b(z) are symmetric, have real
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coefficients and are of degree n and n&1, respectively. Finally, establishing
equation (5.12) is equivalent to showing that

P(sin2 |�2) Q(sin2 |�2)+P(sin2(|&?)�2) Q(sin2(|&?)�2)=1.

However, since sin2(|&?)�2=1&sin2 |�2 this is equivalent to equation
(5.6) with x=sin2|�2.

Our last assertion follows from observing that

a(ei|)=2 `
n

j=1

|ei|+xi |
2

(1+xi)
2 Q(sin2 |�2) (5.15)

which is clearly nonnegative. Moreover, if a(zi|0)=0 than either
Q(sin2 |0 �2)=0 or 1 # [x1 , ..., xn]. If indeed Q(sin2 |0 �2)=0 then
|0= \? since we have already shown above that Q(x)>0 for x # [0, 1).
If Q(sin2 |0 �2){0 then 1 # [x1 , ..., xn] and hence |0=\?. K

We are now ready to make use of this proposition for the analysis
of the following iterative interpolation scheme. We start with a set
4=[*1 , ..., *N] of nonnegative numbers (where we allow multiplicities).
Next, we enlarge this set to 1 :=4 _ (&4) and consider the associate set
of exponentials with frequencies in 1. Specifically, we let

1=[#1 , ..., #2N]

and suppose +1 , ..., +k are the distinct elements in 1 where +j occurs with
multiplicity mj , j=1, ..., k in 1. Therefore m1+m2+ } } } +mk=2N. We
define the linear space

T*=span[xre+j x: 0�r�mj&1, j=1, ..., k],

and the vector * :=(*1 , ..., *N)T. Recall the fact that T* is a Chebyshev
space. Thus there are Lagrange functions lj ( } | *) # T* , j=&N+1, ..., N
such that

li ( j | *)=$ij i, j=&N+1, ..., N.

We now define a subdivision mask [aj (*)]j # Z , as in (3.8), by setting

ae&2k(*) :=lk(e�2 | *), k=&N+1, ..., N+1, e # [0, 1], (5.16)

and zero otherwise. Since the space T* is invariant under the change
x � 1&x of the independent variable of functions in T* we conclude that

l1&k(1&x | *)=lk(x | *), k=&N+1, ..., N

from which it follows that aj (*)=a&j (*), | j |�2N&1.
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To prove convergence of the stationary subdivision scheme with this
mask [ak(*)]k # Z , we will apply Corollary 4.1. To this end, consider the
Laurent polynomial

a(z | *)= :
| j |�2N&1

aj (*) z j z # C"[0], (5.17)

which is symmetric by the above remark. In the next lemma, we list
properties of a(z | *) that will be needed in our convergence analysis.

Proposition 5.2. Suppose 0 # [*1 , ..., *N] and define xi :=e&*i�2, i=1, ..., N
then

a(z | *)+a(&z | *)=2, z # C"[0], (5.18)

and

a(&xi | *)=a(&x&1
i | *)=0, i=1, ..., N, (5.19)

(where derivatives of a(z | *) are taken for multiple xi 's). Moreover,
a(z | *)�0 for |z|=1 with equality if and only if z=&1.

Proof. The proof of this result proceeds as in our discussion of
Deslauriers�Dubuc Interpolation. Specifically, for every p # T* we have

p(i)= :
r # Z

a2r(*) p(i&r), i # Z

and

p(i+1�2)= :
r # Z

a2r+1(*) p(i&r), i # Z.

Hence for all x # R

:
r # Z

a2r(*) p(x&r)= :
r # Z

a2r+1(*) p(x&1�2&r).

If, for instance *1 , ..., *N are distinct and different from zero this equation
implies that for j=1, ..., N

:
r # Z

a2r(*) e\*j (x&r)& :
r # Z

a2r+1(*) e\*j (x&1�2&4)=0

which implies that a(&xi | *)=a(&x&1
i | *)=0, i=1, ..., N. A similar

argument applies for multiple *i 's.
These remarks establish equations (5.19) the proof of (5.18) follows

directly from the fact that a2k(*)=$k , k # Z. Finally, the nonnegativity of
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a(z | *) is a consequence of Proposition 5.1, since (5.18) and (5.19) identify
a(z | *) with the polynomial in that proposition with xi=e*i�2, i=1, ..., N.

The above result with Corollary 4.1 establishes the convergence of the
interpolatory subdivision scheme

(S*c) i := :
j # Z

ai&2j (*) cj , i # Z (5.20)

which we state formally in the theorem below.

Theorem 5.1. For any set of real numbers [*1 , ..., *N] containing zero,
the interpolatory subdivision scheme (5.20) with mask define by (5.16) con-
verges. The refinable function .(x | *) is continuous and zero outside of
(&2N+1, 2N&1). Moreover, it satisfies the refinement equation

.(x | *)= :
k # Z

ak(*) .(2x&k | *), (5.21)

the interpolation conditions

.(k | *)=$k , k # Z (5.22)

and the equation

1= :
j # Z

.(x&j | *), x # R. (5.23)

Next, we use Corollary 4.2 to introduce the function %(x | *) which is a
refinable function whose autocorrelation is .(x | *). To this end, we choose
any real polynomial MN&1 of degree N&1 such that

|MN&1(ei|)| 2=Q(sin2 |�2)

and set

c(z | *) :=2 `
N

i=1 \
z+xi

1+xi+ MN&1(z).

Theorem 5.2. Suppose the hypothesis of Theorem 5.1 holds. Then there
is a %( } | *) # L2(R) with support in (0, 2N&1) such that

%(x | *)= :
2N&1

j=0

cj (*) %(2x&j | *)
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and

|
�

&�
%(x | *) %(x&j | *) dx=$j , j # Z.

Moreover, the corresponding orthonormal wavelet

�(x | *)= :
j # Z

(&1) j c1&j (*) %(2x&j | *) (5.24)

has the property that

�(i*j)=0, j=1, ..., N (5.25)

(with multiplicities).

Proof. Corollary 4.2 yields all the assertions above except (5.25). For
this fact, we note that by (5.24)

�(|)=&e&i|�2%� (|�2) c(&ei|�2)

from which (5.25) follows since xi=e&*i�2 and c(&xi)=0, i=1, ..., N. K

Remark 5.1. When *=0, �( } | 0) is the Daubechies wavelet which we
discussed earlier.

6. Algebraic Characterization of Interpolatory Subdivision Schemes

In this section, we give an algebraic characterization of univariate inter-
polatory subdivision schemes whose symbol has a zero of prescribed order
at &1. According to Theorem 2.2 the order of the zero regulates the
number of continuous derivatives of the refinable function .. Also, it deter-
mines the accuracy of the interpolatory subdivision. That is, the integer r
such that whenever the vector *=(*j) j # Z has the form *j=p( j), j # Z for
some p # ?r&1 then S* has the same form, (S*) j=q( j), j # Z for some
q # ?r&1 (see the proof of Lemma 3.1). On another occasion the computa-
tion presented next will be used to construct other convergent interpolatory
subdivision schemes whose symbol has a prescribed zero at z=&1.

Thus we consider the solution of the equation

a(z)+a(&z)=2, z # C"[0] (6.1)

where a is a Laurent polynomial of the form

a(z)=(1+z)N q(z), q(1)=2&N+1 (6.2)
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for some Laurent polynomial q. We express the Laurent polynomial q in
the form

q(z)=z&mF(z) (6.3)

where m is a nonnegative integer and F is a polynomial. Substituting (6.2)
and (6.3) into (6.1) gives the equation

(1+z)N F(z)+(&1)m (1&z)N F(&z)=2zm. (6.4)

Since the polynomials (1+z)N and (1&z)N have no common zeros and are
both of degree N it follows that there is a unique solution of (6.4) of degree
N&1, cf. [21]. We now proceed to find all solutions of (6.4) of degree
�N&1. To this end, we let deg F=N+l for some l # [&1, 0, 1, ...]. Note
that a(z) has the form

a(z)= :
2N+l&m

&m

aj z j

for some constants [aj]2N+l&m
&m , and since a0=1 we conclude that

0�m�2N+l.

We set n :=2N+l and introduce constants ek, m k, m=0, 1, ..., n by the
definition

zm= :
n

k=0

ek, m(1+z)k (1&z)n&k, m=0, 1, ..., n. (6.5)

By considering the function

( y+z)n= :
n

m=0
\ n

m+ yn&mzm

= :
n

k=0
\n

k+ (1+z)k (1&z)n&k 2&n(&1)n&k (1+y)k (1&y)n&k

we see that (6.5) is equivalent to the formula

(&1)n&k 2&n \n
k+ (1+y)k (1&y)n&k= :

n

m=0
\ n

m+ ek, m yn&m.

Replacing z by &z in (6.5) we conclude that

(&1)m en&k, m=ek, m , k, m=0, 1, ..., n. (6.6)
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These constants lead us to introduce two polynomials

G(z) := :
N&1

j=0

ej, m(1+z) j (1&z)N&1&j

and

H(z) := :
l

j=0

eN+j, m(1+z) j (1&z)l&j .

With these polynomials we are led to the following complete characteriza-
tion of the solution to equations (6.4).

Proposition 6.1. Suppose 0�m�n :=2N+l, l # [&1, 0, 1, ...] and F
is a polynomial of degree �N+l. Then F satisfies (6.4) if and only if

F(z)=(1&z)N H(z)+2(&1)m (1+z)l+1 G(&z)+(1&z)N v(z) (6.7)

where v is any polynomial of degree at most l which satisfies the equation

v(z)+(&1)m v(&z)=0. (6.8)

For the proof we begin with some preliminary observations. (In the com-
putations that follow we drop the second subscript on ek, m and denote this
constant simply by ek .) Note that

deg G�N&1, deg H�l

and also, since

H(&z)= :
l

j=0

eN+j, m(1&z) j (1+z)l&j

= :
l

j=0

el&j+N, m(1+z) j (1&z)l&j

(6.6) implies that

=(&1)m :
l

j=0

eN+j, m(1+z) j (1&z)l&j .

In other words, we have

H(&z)=(&1)m H(z). (6.9)
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Next, we derive an equation relating the polynomials G and H. According
to (6.5) we have

zm= :
N&1

j=0

ej (1+z) j (1&z)n&j+ :
N+l

j=N

ej (1+z) j (1&z)n&j

+ :
2N+l

j=N+l+1

ej (1+z) j (1&z)n&j

=(1&z)N+l+1 G(z)+(1&z2)N H(z)

+ :
N&1

j=0

eN+l+1+j(1+z)N+l+1+j (1&z)N&1&j

and now we use (6.6) to conclude that

zm=(1&z)N+l+1 G(z)+(1&z2)N H(z)

+(&1)m (1+z)N+l+1 G(&z). (6.10)

Proof. For the proof we write F in the form

F(z)= :
N+l

j=0

cj (1+z) j (1+z)N+l&j

for some constants c0 , ..., cN+l . Substituting this formula into (6.4) and
using (6.5) we get

(1+z)N :
N+l

j=0

cj (1+z) j (1&z)N+l&j

+(1&z)N (&1)m :
N+l

j=0

cj (1&z) j (1+z)N+l&j

=2zm=2 :
2N+l

j=0

ej (1+z) j (1&z)n&j

or equivalently,

:
2N+l

r=N

cr&N(1+z)r (1&z)2N+l&r

+(&1)m :
N+l

s=0

cN+l&s(1+z)s (1&z)2N+l&s

=2 :
2N+l

j=0

ej (1+z) j (1&z)2N+l&j .
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Identifying coefficients of the polynomials

(1+z) j (1&z)2N+l&j , 0�j�2N+l

we conclude that

(&1)m cN+l&j , 0�j�N&1

2ej={(&1)m cN+l&j+cj&N , N�j�N+l

cj&N , N+l+1�j�2N+l.

In other words,

cj+(&1)m cl&j=2eN+j , j=0, 1, ..., l (6.11)

cj=2eN+j , j=l+1, ..., N+l (6.12)

where here we used equation (6.6). Also, from this equation and equation
(6.11) we see that

cj=eN+j+vj , j=0, 1, ..., l&1

where, as required by (6.10)

v(x) := :
l

j=0

vj (1+z) j (1&z)l&j

satisfies

v(z)+(&1)m v(&z)=0.

Hence we conclude that

F(z)= :
l

j=0

cj (1+z) j (1&z)N+l&j+ :
N+l

j=l+1

cj (1+z) j (1&z)N+l&j

=(1&z)N :
l

j=0

[eN+j+vj](1+z) j (1&z)l&j

+2 :
N&1

j=0

eN+l+j+1(1+z)l+1+j (1&z)N&1&j

=(1&z)N [H(z)+v(z)]+2(&1)m (1+z)l+1

_ :
N&1

j=0

eN&1&j (1+z) j (1&z)N&1&j

=(1&z)N H(z)+(1&z)N v(z)+2(&1)m (1+z)l+1G(&z).
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Finally, we confirm that any polynomial solution of the form (6.7) does
indeed solve (6.4). To see this we replace z by &z in (6.10), multiply both
sides of the resulting equation by (&1)m and add the result to (6.10). This
gives us

2zm=(1&z2)N (H(z)+(&1)m H(&z))+2(1&z)N+l+1 G(z)

+2(&1)m (1+z)N+l+1 G(&z). (6.13)

Next, we use (6.7) and observe that

(1+z)N F(z)+(&1)m (1&z)N F(&z)

=(1&z2)N [H(z)+(&1)m H(&z)]+(1&z2)N [v(z)+(&1)m v(z)]

+2(1&z)N+l+1 G(z)+2(&1)m (1+z)N+l+1 G(&z)

and so by (6.8) and (6.13)

(1+z)N F(z)+(&1)m (1&z)N F(&z)=2zm. K

By definition, a symmetric scheme is one for which the mask satisfies the
requirement that

aj=a&j , j # Z.

That is, a(z)=a(z&1), z # C"[0]. Note again that a(z) has the form

a(z)= :
2N+l&m

&m

aj z j

so that we conclude for a symmetric scheme

l=2(m&N)

and then in this case

[ j: aj {0]�[&m, ..., m].

Consequently, we have N�m and so the symmetric interpolatory scheme
with least support corresponds to the choice l=0 and m=N. Therefore,
according to Proposition 6.1, this scheme is given uniquely by

a(z)=z&N(1+z)N [(1&z)N H(z)+2(&1)N (1+z) G(&z)]

=(z&1&z)N H(z)+2(&1)N z&N(1+z)N+1 G(&z).
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When N=m=2M&1 is odd, equation (6.7) implies that H(z)=0 (since
for l=0 H is a constant). Also (6.8) implies that

z2M&1=(1&z)2M G(z)&(1+z)2M G(&z)

where deg G�2M&2 and

a(z)=&2z&2M+1(1+z)2M G(&z).

This remark also leads us to the statement that the autocorrelation of
the Daubechies wavelet is the Lagrange function of Deslauriers�Dubuc
interpolation.
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